Experimental Technique
1. 设置随机种子
1 | seed = 1234 |
2. 参数加载
- 超参数加载,最常用的方法是使用
argparse
:1
2
3
4
5
6
7import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--nproc_per_node', default=2, type=int, help='nums of process/gpu')
parser.add_argument('--nnode', default=1, type=int, help='nums of node')
parser.add_argument('--node_rank', default=0, type=int)
args = parser.parse_args() - 也可以使用yaml文件编写json格式的参数,通过以下方式加载:
1
2
3
4
5
6
7
8
9"""
json格式
model:
batch_size: 2
"""
with open("config.yaml", 'r', encoding='utf-8') as f:
cfg = yaml.safe_load(f)
return cfg
batch_size = cfg['model']['batch_size']
3. 数据处理
- 自定义跳过脏数据
return self.__getitem__(index + 1)
- 还有一种修改源文件的方法,我没调试成功。
4. 模型优化
学习率衰减策略。大部分论文中使用的都是warmup + cosine_decay。实际上大家都是守着模型手动调
1
2
3
4
5
6
7
8
9
10
11
12if lr_decay_type == 'warmup_step':
t, T = warmup_step, epochs
lr_lambda = lambda epoch: (0.9 * epoch / t + 0.1) if epoch < t \
else 0.1 if 0.5 * (1 + math.cos(math.pi * (epoch - t) / (T - t))) < 0.1 \
else 0.5 * (1 + math.cos(math.pi * (epoch - t) / (T - t)))
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
elif lr_decay_type == 'consine_anneal':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
elif lr_decay_type == 'linear':
scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1, end_factor=0.05, total_iters=epochs*3117)
else: # step
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=int(1e9), gamma=0.1, last_epoch=-1)分布式训练 + 混合精度加速训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48import torch.distributed as dist
from apex.parallel import DistributedDataParallel
from apex import amp
import torch.multiprocessing as mp
# 添加环境变量
os.environ["CUDA_VISBLE_DEVICES"] = '0,1' # 双卡
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '23456'
os.environ['RANK'] = '0'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def load_data(data_mode):
dataset = Dataset(...)
# data_single = next(iter(dataset))
# use num_workers to set parallel
if data_mode == 'train' or data_mode == 'val':
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=4, pin_memory=True, sampler=sampler)
else:
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=0, pin_memory=True)
return loader
def main_worker(local_rank, args):
# 初始化
global_rank = local_rank + args.node_rank * args.nproc_per_node
world_size = args.nnode * args.nproc_per_node
dist.init_process_group(backend="nccl", init_method='env://', rank=global_rank, world_size=world_size)
# 加载数据和模型
train_loader = load_data(data_mode='train')
model = init_model()
para_num = sum([param.nelement() for param in model.parameters()])
print("Number of parameter: %.2fM" % (para_num / 1e6))
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
model = DistributedDataParallel(model)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
criterion = Loss(...)
criterion.cuda(local_rank)
train()
dist.destroy_process_group()
def main():
mp.spawn(main_worker, nprocs=2, args=(args,))求导监测
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20# 正向传播开启自动求导异常侦测
torch.autograd.set_detect_anomaly(True)
# 查看参数梯度和更新情况
for name, parms in model.named_parameters():
print("更新前/后")
print('-->name:', name)
print('-->para:', parms)
print('-->grad_requirs:', parms.requires_grad)
print('-->grad_value:', parms.grad)
# 反向传播求导侦测
from apex import amp
# from torch.cuda import amp
with torch.autograd.detect_anomaly():
if use_amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward(retain_graph=True)继续训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19# 加载模型的预训练参数
pretrained_dict = torch.load(pretrained_model_path + pretrained_model, map_location='cpu')['state_dict']
model_name.load_state_dict({k: v for k, v in pretrained_dict.items()}, strict=False)
# 加载优化器的预训练参数
pretrained_dict = torch.load(pretrained_model_path + pretrained_model, map_location='cpu')['optimizer']
optimizer.load_state_dict(pretrained_dict)
for param_group in optimizer.param_groups: # 单独修改学习率
param_group["lr"] = lr
del pretrained_dict
# 保存训练好的模型
checkpoint = {
# 'model': Model(), # 模型大的时候不建议保存
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
checkpoint_path = output_path + 'checkpoint_better.pkl'
torch.save(checkpoint, checkpoint_path)其他技巧
- pytorch加速训练的17种方法
- 在单个GPU上进行高效训练
- adamw_apex_fused
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment